Responsible Data Science: Transparency and Fairness in Algorithms


Responsible Data Science
By 作者:Grant Fleming
Publisher Finelybook 出版社 : Wiley; 1st edition (April 23, 2021)
Language 语言: English
pages 页数: 304 pages
ISBN-10 书号: 1119741750
ISBN-13 书号 : 9781119741756
The Book Description
Explore the most serious prevalent ethical issues in data science with this insightful new resource

The increasing popularity of data science has resulted in numerous well-publicized cases of bias, injustice, and discrimination. The widespread deployment of “Black box” algorithms that are difficult or impossible to understand and explain, even for their developers, is a primary source of these unanticipated harms, making modern techniques and methods for manipulating large data sets seem sinister, even dangerous. When put in the hands of authoritarian governments, these algorithms have enabled suppression of political dissent and persecution of minorities. To prevent these harms, data scientists everywhere must come to understand how the algorithms that they build and deploy may harm certain groups or be unfair.

Responsible Data Science delivers a comprehensive, practical treatment of how to implement data science solutions in an even-handed and ethical manner that minimizes the risk of undue harm to vulnerable members of society. Both data science practitioners and managers of analytics teams will learn how to:

Improve model transparency, even for black box models
Diagnose bias and unfairness within models using multiple metrics
Audit projects to ensure fairness and minimize the possibility of unintended harm
Perfect for data science practitioners, Responsible Data Science will also earn a spot on the bookshelves of technically inclined managers, software developers, and statisticians.


下载地址

Responsible Data Science 9781119741756.zip

赞(0) 觉得文章有用就打赏一下文章作者
未经允许不得转载:finelybook » Responsible Data Science: Transparency and Fairness in Algorithms
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏