Machine Learning Systems: Designs that scale

Machine Learning Systems: Designs that scale
By 作者: Jeff Smith
ISBN-10 书号: 1617293334
ISBN-13 书号: 9781617293337
Edition 版本: 1
Release Finelybook 出版日期: 2018-07-08
pages 页数: 224


Book Description to Finelybook sorting

Machine Learning Systems: Designs that scale is an example-rich guide that teaches you how to implement reactive design solutions in your machine learning systems to make them as reliable as a well-built web app.
Foreword by Sean Owen, Director of Data Science, Cloudera
If you’re building machine learning models to be used on a small scale, you don’t need this book. But if you’re a developer building a production-grade ML application that needs quick response times, reliability, and good user experience, this is the book for you. It collects principles and practices of machine learning systems that are dramatically easier to run and maintain, and that are reliably better for users.
Machine Learning Systems: Designs that scale teaches you to design and implement production-ready ML systems. You’ll learn the principles of reactive design as you build pipelines with Spark, create highly scalable services with Akka, and use powerful machine learning libraries like MLib on massive datasets. The examples use the Scala language, but the same ideas and tools work in Java, as well.
What’s Inside
Working with Spark, MLlib, and Akka
Reactive design patterns
Monitoring and maintaining a large-scale system
Futures, actors, and supervision
About the Reader
Readers need intermediate skills in Java or Scala. No prior machine learning experience is assumed.
about the cover illustration
Part 1:Fundamentals of reactive machine learning
Part 2:Building a reactive machine learning system
Part 3:Operating a machine learning system
Appendix:Getting set up

Machine Learning Systems Designs that scale 9781617293337.pdf

赞(0) 赞赏
未经允许不得转载:finelybook » Machine Learning Systems: Designs that scale
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址