Julia High Performance: Optimizations,distributed computing,multithreading,and GPU programming with Julia 1.0 and beyond,2nd Edition
Authors: Avik Sengupta
ISBN-10: 178829811X
ISBN-13: 9781788298117
Publication Date 出版日期: 2019-06-10
Print Length 页数: 218 pages
Book Description
By finelybook
Design and develop high-performance programs in Julia 1.0
Julia is a high-level,high-performance dynamic programming language for numerical computing. If you want to understand how to avoid bottlenecks and design your programs for the highest possible performance,then this book is for you.
The book starts with how Julia uses type information to achieve its performance goals,and how to use multiple dispatches to help the compiler emit high-performance machine code. After that,you will learn how to analyze Julia programs and identify issues with time and memory consumption. We teach you how to use Julia’s typing facilities accurately to write high-performance code and describe how the Julia compiler uses type information to create fast machine code. Moving ahead,you’ll master design constraints and learn how to use the power of the GPU in your Julia code and compile Julia code directly to the GPU. Then,you’ll learn how tasks and asynchronous IO help you create responsive programs and how to use shared memory multithreading in Julia. Toward the end,you will get a flavor of Julia’s distributed computing capabilities and how to run Julia programs on a large distributed cluster.
By the end of this book,you will have the ability to build large-scale,high-performance Julia applications,design systems with a focus on speed,and improve the performance of existing programs.
What you will learn
Understand how Julia code is transformed into machine code
Measure the time and memory taken by Julia programs
Create fast machine code using Julia’s type information
Define and call functions without compromising Julia’s performance
Accelerate your code via the GPU
Use tasks and asynchronous IO for responsive programs
Run Julia programs on large distributed clusters
contents
1 Julia is Fast
2 Analyzing Performance
3 Types,Type Inference,and Stability
4 Making Fast Function Calls
5 Fast Numbers
6 Using Arrays
7 Accelerating Code with the GPU
8 Concurrent Programming with Tasks
9 Threads
10 Distributed Computing with Julia