Introduction to Probability: Multivariate Models and Applications

Introduction to Probability: Multivariate Models and Applications (Wiley Series in Probability and Statistics)

Introduction to Probability: Multivariate Models and Applications (Wiley Series in Probability and Statistics)

Author: Narayanaswamy Balakrishnan (Author), Markos V. Koutras (Author), Konstadinos G. Politis (Author)

Publisher finelybook 出版社:‏ Wiley

Edition 版本:‏ 1st edition

Publication Date 出版日期:‏ 2021-12-29

Language 语言: English

Print Length 页数: 544 pages

ISBN-10: 1118123336

ISBN-13: 9781118123331

Book Description

INTRODUCTION TO PROBABILITY

Discover practical models and real-world applications of multivariate models useful in engineering, business, and related disciplines

In Introduction to Probability: Multivariate Models and Applications, a team of distinguished researchers delivers a comprehensive exploration of the concepts, methods, and results in multivariate distributions and models. Intended for use in a second course in probability, the material is largely self-contained, with some knowledge of basic probability theory and univariate distributions as the only prerequisite.

This textbook is intended as the sequel to Introduction to Probability: Models and Applications. Each chapter begins with a brief historical account of some of the pioneers in probability who made significant contributions to the field. It goes on to describe and explain a critical concept or method in multivariate models and closes with two collections of exercises designed to test basic and advanced understanding of the theory.

A wide range of topics are covered, including joint distributions for two or more random variables, independence of two or more variables, transformations of variables, covariance and correlation, a presentation of the most important multivariate distributions, generating functions and limit theorems. This important text:

  • Includes classroom-tested problems and solutions to probability exercises
  • Highlights real-world exercises designed to make clear the concepts presented
  • Uses Mathematica software to illustrate the text’s computer exercises
  • Features applications representing worldwide situations and processes
  • Offers two types of self-assessment exercises at the end of each chapter, so that students may review the material in that chapter and monitor their progress

Perfect for students majoring in statistics, engineering, business, psychology, operations research and mathematics taking a second course in probability, Introduction to Probability: Multivariate Models and Applications is also an indispensable resource for anyone who is required to use multivariate distributions to model the uncertainty associated with random phenomena.

From the Inside Flap

Discover practical models and real-world applications of multivariate models useful in engineering, business, and related disciplines

In Introduction to Probability: Multivariate Models and Applications, a team of distinguished researchers delivers a comprehensive exploration of the concepts, methods, and results in multivariate distributions and models. Intended for use in a second course in probability, the material is largely self-contained, with some knowledge of basic probability theory and univariate distributions as the only prerequisite.

This textbook is intended as the sequel to Introduction to Probability: Models and Applications. Each chapter begins with a brief historical account of some of the pioneers in probability who made significant contributions to the field. It goes on to describe and explain a critical concept or method in multivariate models and closes with two collections of exercises designed to test basic and advanced understanding of the theory.

A wide range of topics are covered, including joint distributions for two or more random variables, independence of two or more variables, transformations of variables, covariance and correlation, a presentation of the most important multivariate distributions, generating functions and limit theorems. This important text:

  • Includes classroom-tested problems and solutions to probability exercises
  • Highlights real-world exercises designed to make clear the concepts presented
  • Uses Mathematica software to illustrate the text’s computer exercises
  • Features applications representing worldwide situations and processes
  • Offers two types of self-assessment exercises at the end of each chapter, so that students may review the material in that chapter and monitor their progress

Perfect for students majoring in statistics, engineering, business, psychology, operations research and mathematics taking a second course in probability, Introduction to Probability: Multivariate Models and Applications is also an indispensable resource for anyone who is required to use multivariate distributions to model the uncertainty associated with random phenomena.

From the Back Cover

Discover practical models and real-world applications of multivariate models useful in engineering, business, and related disciplines

In Introduction to Probability: Multivariate Models and Applications, a team of distinguished researchers delivers a comprehensive exploration of the concepts, methods, and results in multivariate distributions and models. Intended for use in a second course in probability, the material is largely self-contained, with some knowledge of basic probability theory and univariate distributions as the only prerequisite.

This textbook is intended as the sequel to Introduction to Probability: Models and Applications. Each chapter begins with a brief historical account of some of the pioneers in probability who made significant contributions to the field. It goes on to describe and explain a critical concept or method in multivariate models and closes with two collections of exercises designed to test basic and advanced understanding of the theory.

A wide range of topics are covered, including joint distributions for two or more random variables, independence of two or more variables, transformations of variables, covariance and correlation, a presentation of the most important multivariate distributions, generating functions and limit theorems. This important text:

  • Includes classroom-tested problems and solutions to probability exercises
  • Highlights real-world exercises designed to make clear the concepts presented
  • Uses Mathematica software to illustrate the text’s computer exercises
  • Features applications representing worldwide situations and processes
  • Offers two types of self-assessment exercises at the end of each chapter, so that students may review the material in that chapter and monitor their progress

Perfect for students majoring in statistics, engineering, business, psychology, operations research and mathematics taking a second course in probability, Introduction to Probability: Multivariate Models and Applications is also an indispensable resource for anyone who is required to use multivariate distributions to model the uncertainty associated with random phenomena.

相关文件下载地址

PDF | 4 MB | 2024-11-17
下载地址 Download解决验证以访问链接!
打赏
未经允许不得转载:finelybook » Introduction to Probability: Multivariate Models and Applications

评论 抢沙发

觉得文章有用就打赏一下

您的打赏,我们将继续给力更多优质内容

支付宝扫一扫

微信扫一扫