Hands-On Geospatial Analysis with R and QGIS: A beginner’s guide to manipulating,managing,and analyzing spatial data using R and QGIS 3.2.2
Authors: Shammunul Islam
ISBN-10: 1788991672
ISBN-13: 9781788991674
Released: 2018-11-30
Print Length 页数: 354 pages
Book Description
Practical examples with real-world projects in GIS,Remote sensing,Geospatial data management and Analysis using the R programming language
Managing spatial data has always been challenging and it’s getting more complex as the size of data increases. Spatial data is actually big data and you need different tools and techniques to work your way around to model and create different workflows. R and QGIS have powerful features that can make this job easier.
This book is your companion for applying machine learning algorithms on GIS and remote sensing data. You’ll start by gaining an understanding of the nature of spatial data and installing R and QGIS. Then,you’ll learn how to use different R packages to import,export,and visualize data,before doing the same in QGIS. Screenshots are included to ease your understanding.
Moving on,you’ll learn about different aspects of managing and analyzing spatial data,before diving into advanced topics. You’ll create powerful data visualizations using ggplot2,ggmap,raster,and other packages of R. You’ll learn how to use QGIS 3.2.2 to visualize and manage (create,edit,and format) spatial data. Different types of spatial analysis are also covered using R. Finally,you’ll work with landslide data from Bangladesh to create a landslide susceptibility map using different machine learning algorithms.
By reading this book,you’ll transition from being a beginner to an intermediate user of GIS and remote sensing data in no time.
What you will learn
Install R and QGIS
Get familiar with the basics of R programming and QGIS
Visualize quantitative and qualitative data to create maps
Find out the basics of raster data and how to use them in R and QGIS
Perform geoprocessing tasks and automate them using the graphical modeler of QGIS
Apply different machine learning algorithms on satellite data for landslide susceptibility mapping and prediction
contents
1 Setting Up R and QGIS Environments for Geospatial Tasks
2 Fundamentals of GIS Using R and QGIS
3 Creating Geospatial Data
4 Working with Geospatial Data
5 Remote Sensing Using R and QGIS
6 Point Pattern Analysis
7 Spatial Analysis
8 GRASS,Graphical Modelers,and Web Mapping
9 Classification of Remote Sensing Images
10 Landslide Susceptibility Mapping