Distributed Machine Learning Patterns


Distributed Machine Learning Patterns
by 作者: Yuan Tang (Author)
Publisher Finelybook 出版社: Manning
Publication Date 出版日期: 2024-01-02
Language 语言: English
Pages 页数: 248 pages
ISBN-10 书号: 1617299022
ISBN-13 书号: 9781617299025


Book Description
Practical patterns for scaling machine learning from your laptop to a distributed cluster.
Distributing machine learning systems allow developers to handle extremely large datasets across multiple clusters, take advantage of automation tools, and benefit from hardware accelerations. This book reveals best practice techniques and insider tips for tackling the challenges of scaling machine learning systems.
In
Distributed Machine Learning Patterns you will learn how to:

  • Apply distributed systems patterns to build scalable and reliable machine learning projects
  • Build ML pipelines with data ingestion, distributed training, model serving, and more
  • Automate ML tasks with Kubernetes, TensorFlow, Kubeflow, and Argo Workflows
  • Make trade-offs between different patterns and approaches
  • Manage and monitor machine learning workloads at scale


Inside
Distributed Machine Learning Patterns you’ll learn to apply established distributed systems patterns to machine learning projects—plus explore cutting-edge new patterns created specifically for machine learning. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Hands-on projects and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the technology
Deploying a machine learning application on a modern distributed system puts the spotlight on reliability, performance, security, and other operational concerns. In this in-depth guide, Yuan Tang, project lead of Argo and Kubeflow, shares patterns, examples, and hard-won insights on taking an ML model from a single device to a distributed cluster.
About the book
Distributed Machine Learning Patterns provides dozens of techniques for designing and deploying distributed machine learning systems. In it, you’ll learn patterns for distributed model training, managing unexpected failures, and dynamic model serving. You’ll appreciate the practical examples that accompany each pattern along with a full-scale project that implements distributed model training and inference with autoscaling on Kubernetes.
What’s inside

  • Data ingestion, distributed training, model serving, and more
  • Automating Kubernetes and TensorFlow with Kubeflow and Argo Workflows
  • Manage and monitor workloads at scale


About the reader
For data analysts and engineers familiar with the basics of machine learning, Bash, Python, and Docker.
About the author
Yuan Tang is a project lead of Argo and Kubeflow, maintainer of TensorFlow and XGBoost, and author of numerous open source projects.
Table of


Contents
PART 1 BASIC CONCEPTS AND BACKGROUND
1 Introduction to distributed machine learning systems
PART 2 PATTERNS OF DISTRIBUTED MACHINE LEARNING SYSTEMS
2 Data ingestion patterns
3 Distributed training patterns
4 Model serving patterns
5 Workflow patterns
6 Operation patterns
PART 3 BUILDING A DISTRIBUTED MACHINE LEARNING WORKFLOW
7 Project overview and system architecture
8 Overview of relevant technologies
9 A complete implementation

Review

‘This is a really well thought out book on the problem of dealing with machine learning in a distributed environment.’ Richard Vaughan
‘A sound introduction to the exciting field of distributed ml for practitioners.’ Pablo Roccat
‘I came away with a greater familiarity with distributed training ideas, problems, and solutions.’
Matt Sarmiento


From the Back Cover

Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In Distributed Machine Learning Patterns, you’ll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines.
Distributing machine learning systems allow developers to handle extremely large datasets across multiple clusters, take advantage of automation tools, and benefit from hardware accelerations.

Amazon page

下载地址 Download解决验证以访问链接!
打赏
未经允许不得转载:finelybook » Distributed Machine Learning Patterns

评论 抢沙发

觉得文章有用就打赏一下

您的打赏,我们将继续给力更多优质内容

支付宝扫一扫

微信扫一扫