Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras


Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras
by: Vaibhav Verdhan
Publisher finelybook 出版社: Apress; 1st ed. edition (February 15,2021)
Language 语言: English
Print Length 页数: 332 pages
ISBN-10: 1484266153
ISBN-13: 9781484266151


Book Description
By finelybook

Organizations spend huge resources in developing software that can perform the way a human does. Image classification,object detection and tracking,pose estimation,facial recognition,and sentiment estimation all play a major role in solving computer vision problems.
This book will bring into focus these and other deep learning architectures and techniques to help you create solutions using Keras and the TensorFlow library. You’ll also review mutliple neural network architectures,including LeNet,AlexNet,VGG,Inception,R-CNN,Fast R-CNN,Faster R-CNN,Mask R-CNN,YOLO,and SqueezeNet and see how they work alongside Python code via best practices,tips,tricks,shortcuts,and pitfalls. All code snippets will be broken down and discussed thoroughly so you can implement the same principles in your respective environments.
Computer Vision Using Deep Learning offers a comprehensive yet succinct guide that stitches DL and CV together to automate operations,reduce human intervention,increase capability,and cut the costs.
What You’ll Learn
Examine deep learning code and concepts to apply guiding principals to your own projects
Classify and evaluate various architectures to better understand your options in various use cases
Go behind the scenes of basic deep learning functions to find out how they work

相关文件下载地址

打赏
未经允许不得转载:finelybook » Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras

评论 抢沙发

觉得文章有用就打赏一下

您的打赏,我们将继续给力更多优质内容

支付宝扫一扫

微信扫一扫