Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure


Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure
by Sridhar Alla and Suman Kalyan Adari
Publisher Finelybook 出版社 : Apress; 1st ed. edition (December 8, 2020)
Language 语言: : English
pages 页数: 344 pages
ISBN-10 : 1484265483
ISBN-13 : 9781484265482
The Book Description robot was collected from Amazon and arranged by Finelybook
Integrate MLOps principles into existing or future projects using MLFlow, operationalize your models, and deploy them in AWS SageMaker, Google Cloud, and Microsoft Azure. ​This book guides you through the process of data analysis, model construction, and training.
The authors begin By 作者:introducing you to basic data analysis on a credit card data set and teach you how to analyze the features and their relationships to the target variable. You will learn how to build logistic regression models in scikit-learn and PySpark, and you will go through the process of hyperparameter tuning with a validation data set. You will explore three different deployment setups of machine learning models with varying levels of automation to help you better understand MLOps. MLFlow is covered and you will explore how to integrate MLOps into your existing code, allowing you to easily track metrics, parameters, graphs, and models. You will be guided through the process of deploying and querying your models with AWS SageMaker, Google Cloud, and Microsoft Azure. And you will learn how to integrate your MLOps setups using Databricks.
What You Will Learn

Perform basic data analysis and construct models in scikit-learn and PySpark
Train, test, and validate your models (hyperparameter tuning)
Know what MLOps is and what an ideal MLOps setup looks like
Easily integrate MLFlow into your existing or future projects
Deploy your models and perform predictions with them on the cloud

下载地址 Download隐藏内容需1积分,请先!没有帐号? 注 册 一个!
觉得文章有用就打赏一下文章作者
未经允许不得转载:finelybook » Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏