Assessing and Improving Prediction and Classification: Theory and Algorithms in C++

Assessing and Improving Prediction and Classification: Theory and Algorithms in C++ Front Cover
Assessing and Improving Prediction and Classification: Theory and Algorithms in C++
By 作者: Timothy Masters
Pages 页数: 517 pages
Edition 版本: 1st ed.
Language 语言: English
Publisher Finelybook 出版社: Apress
Publication Date 出版日期: 2017-12-20
ISBN-10 书号:1484233352
ISBN-13 书号:9781484233351

The Book Description robot was collected from Amazon and arranged by Finelybook

Assess the quality of your prediction and classification models in ways that accurately reflect their real-world performance, and then improve this performance using state-of-the-art algorithms such as committee-based decision making, resampling the dataset, and boosting. This book presents many important techniques for building powerful, robust models and quantifying their expected behavior when put to work in your application.
Considerable attention is given to information theory, especially as it relates to discovering and exploiting relationships between variables employed by your models. This presentation of an often confusing subject avoids advanced mathematics, focusing instead on concepts easily understood by those with modest background in mathematics.
All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code. Many of these techniques are recent developments, still not in widespread use. Others are standard algorithms given a fresh look. In every case, the emphasis is on practical applicability, with all code written in such a way that it can easily be included in any program.
What You'll Learn
Compute entropy to detect problematic predictors.
Compute confidence and tolerance intervals for predictions, as well as confidence levels for classification decisions.
Improve numeric predictions using constrained and unconstrained combinations, variance-weighted interpolation, and kernel-regression smoothing.
Improve classification decisions using Borda counts, MinMax and MaxMin rules, union and intersection rules, logistic regression, selection by local accuracy, maximization of the fuzzy integral, and pairwise coupling.
Use information-theoretic techniques to rapidly screen large numbers of candidate predictors, identifying those that are especially promising.
Use Monte-Carlo permutation methods to assess the role of good luck in performance results.
Who This Book is For
Anyone who creates prediction or classification models will find a wealth of useful algorithms in this book. Although all code examples are written in C++, the algorithms are described in sufficient detail that they can easily be programmed in any language.

Contents


Chapter 1: Assessment of Numeric Predictions
Chapter 2: Assessment of Class Predictions
Chapter 3: Resampling for Assessing Parameter Estimates
Chapter 4: Resampling for Assessing Prediction and Classification
Chapter 5: Miscellaneous Resampling Techniques
Chapter 6: Combining Numeric Predictions
Chapter 7: Combining Classification Models
Chapter 8: Gating Methods
Chapter 9: Information and Entropy


下载地址

Apress Assessing and Improving Prediction and Classification 1484233352.epub

下载地址

Apress Assessing and Improving Prediction and Classification 1484233352.pdf

觉得文章有用就打赏一下文章作者
未经允许不得转载:finelybook » Assessing and Improving Prediction and Classification: Theory and Algorithms in C++
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏