Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks

Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks
Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks (SpringerBriefs in Computer Science)
By 作者: Arindam Chaudhuri
ISBN-10 书号: 9811374732
ISBN-13 书号: 9789811374739
Edition 版本: 1st ed. 2019
Release Finelybook 出版日期: 2019-04-07
pages 页数: (120 )

$59.99

Book Description to Finelybook sorting

This book presents the latest research on hierarchical deep learning for multi-modal sentiment analysis. Further, it analyses sentiments in Twitter blogs from both textual and visual content using hierarchical deep learning networks: hierarchical gated feedback recurrent neural networks (HGFRNNs). Several studies on deep learning have been conducted to date, but most of the current methods focus on either only textual content, or only visual content. In contrast, the proposed sentiment analysis model can be applied to any social blog dataset, making the book highly beneficial for postgraduate students and researchers in deep learning and sentiment analysis.
The mathematical abstraction of the sentiment analysis model is presented in a very lucid manner. The complete sentiments are analysed by combining text and visual prediction results. The book’s novelty lies in its development of innovative hierarchical recurrent neural networks for analysing sentiments; stacking of multiple recurrent layers by controlling the signal flow from upper recurrent layers to lower layers through a global gating unit; evaluation of HGFRNNs with different types of recurrent units; and adaptive assignment of HGFRNN layers to different timescales. Considering the need to leverage large-scale social multimedia content for sentiment analysis, both state-of-the-art visual and textual sentiment analysis techniques are used for joint visual-textual sentiment analysis. The proposed method yields promising results from Twitter datasets that include both texts and images, which support the theoretical hypothesis.

Front Matter
1.Introduction
2.Current State of Art
3.Literature Review
4.Experimental Data Utilized
5.Visual and Text Sentiment Analysis
6.Experimental Setup:Visual and Text Sentiment Analysis Through Hierarchical Deep Learning Networks
7.Experimental Results
8.Conclusion
Back Matter

以下隐藏内容!
仅供捐助用户可见,查看需要1积分,请先

ZIP压缩文内包含(PDF+EPUB+AZW3+MOBI+Code)其一
捐助获取帐号积分点击了解一下
赞(0) 打赏
未经允许不得转载:finelybook » Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏