The Craft of Model-Based Testing
by Paul C. Jorgensen
Print Length 页数: 456 pages
Publisher finelybook 出版社: Auerbach Publications; 1 edition (1 Jun. 2017)
Language 语言: English
ISBN-10: 1498712282
ISBN-13: 9781498712286
In his latest work,author Paul C Jorgensen takes his well-honed craftsman’s approach to mastering model-based testing (MBT). To be expert at MBT,a software tester has to understand it as a craft rather than an art. This means a tester should have deep knowledge of the underlying subject and be well practiced in carrying out modeling and testing techniques. Judgment is needed,as well as an understanding of MBT the tools.
The first part of the book helps testers in developing that judgment. It starts with an overview of MBT and follows with an in-depth treatment of nine different testing models with a chapter dedicated to each model. These chapters are tied together by a pair of examples: a simple insurance premium calculation and an event-driven system that describes a garage door controller. The book shows how simpler models—flowcharts,decision tables,and UML Activity charts—express the important aspects of the insurance premium problem. It also shows how transition-based models—finite state machines,Petri nets,and statecharts—are necessary for the garage door controller but are overkill for the insurance premium problem. Each chapter describes the extent to which a model can support MBT.
The second part of the book gives testers a greater understanding of MBT tools. It examines six commercial MBT products,presents the salient features of each product,and demonstrates using the product on the insurance premium and the garage door controller problems. These chapters each conclude with advice on implementing MBT in an organization. The last chapter describes six Open Source tools to round out a tester’s knowledge of MBT. In addition,the book supports the International Software Testing Qualifications Board’s (ISTQB®) MBT syllabus for certification.
Contents
PART 1 THEORY OF MODELS FOR MODEL-BASED TESTING
Chapter 1 Overview Of Model-Based Testing
Chapter 2 Flowcharts
Chapter 3 Decision Tables
Chapter 4 Finite State Machines
Chapter 5 Petri Nets
Chapter 6 Event-Driven Petri Nets
Chapter 7 Statecharts
Chapter 8 Swim Lane Event-Driven Petri Nets
Chapter 9 Object-Oriented Models
Chapter 10 Business Process Modeling And Notation
PART 2 THE PRACTICE OF MODEL-BASED TESTING
Chapter 11 About The International Software Testing Qualification Board
Chapter 12 Implementing Mbt In An Organization
Chapter 13 Information Provided To Model-Based Testing Tool Vendors
Chapter 14 Smartesting Yest And Certifyit
Chapter 15 Testoptimal
Chapter 16 Conformiq,Inc
Chapter 17 Elvior
Chapter 19 Verified Systems International Gmbh
Chapter 20 Open-Source Model-Based Testing Tools
作者Paul C Jorgensen在他最新的作品中,以他娴熟的工匠的方法来掌握基于模型的测试(MBT)。要成为MBT的专家,软件测试者必须将其理解为工艺,而不是艺术。这意味着测试员应该深入了解基础课题,并在进行建模和测试技术方面进行良好的实践。需要判断,以及了解MBT的工具。
本书的第一部分帮助测试人员制定了这一判断。它从MBT的概述开始,并且深入处理了九个不同的测试模型,其中有一章专门针对每个模型。这些章节通过一对例子相结合: 简单的保险费计算和描述车库门控制器的事件驱动系统。该书显示了更简单的模型 – 流程图,决策表和UML活动图表 – 表达了保险费问题的重要方面。它还显示了基于过渡的模型 – 有限状态机,Petri网和状态图是车库门控制器所必需的,但是对保险费问题而言是过度的。每章都描述了模型可以支持MBT的程度。
本书的第二部分让测试人员更了解MBT工具。它检查了六种商业MBT产品,展示了每种产品的突出特点,并展示了使用该产品对保险费和车库门控制器的问题。这些章节各自对组织中实施MBT的建议进行了总结。最后一章描述了六种开放源码工具,用于整理测试人员对MBT的了解。此外,该书还支持国际软件测试认证委员会(ISTQB®)MBT认证课程。
目录
第1部分基于模型的测试模型理论
第1章基于模型的测试概述
第二章流程图
第3章决策表
第四章有限状态机
第5章Petri网
第6章事件驱动的Petri网
第七章状态图
第8章游泳车道事件驱动的Petri网
第9章面向对象的模型
第10章业务流程建模与符号
第2部分基于模型的测试的实践
第11章国际软件测试认证委员会
第12章在组织中实施Mbt
第13章向基于模型的测试工具供应商提供的信息
第14章智慧与认证
第十五章妊娠
第16章Conformiq,Inc
第17章Elvior
第19章验证系统国际有限公司
第20章基于开源模型的测试工具
The Craft of Model-Based Testing
未经允许不得转载:finelybook » The Craft of Model-Based Testing
相关推荐
- Intelligence in Chip: Integrated Sensors and Memristive Computing
- Super Study Guide: Algorithms & Data Structures
- Fuzzy Methods for Assessment and Decision Making
- Super Study Guide: Transformers & Large Language Models
- Artificial Intelligence and Machine Learning Foundations: Learning from Experience, 2nd Edition
- Data-Driven Analytics for Healthcare: Artificial Intelligence and Machine Learning for Medical Diagnostics