TensorFlow Reinforcement Learning Quick Start Guide: Get up and running with training and deploying intelligent, self-learning agents using Python

TensorFlow Reinforcement Learning Quick Start Guide: Get up and running with training and deploying intelligent, self-learning agents using Python
TensorFlow Reinforcement Learning Quick Start Guide: Get up and running with training and deploying intelligent, self-learning agents using Python
By 作者: Kaushik Balakrishnan
ISBN-10 书号: 1789533589
ISBN-13 书号: 9781789533583
Release Finelybook 出版日期: 2019-03-30
pages 页数: (184 )

$24.99

Book Description to Finelybook sorting

Learn
Understand the theory and concepts behind modern Reinforcement Learning algorithms
Code state-of-the-art Reinforcement Learning algorithms with discrete or continuous actions
Develop Reinforcement Learning algorithms and apply them to training agents to play computer games
Explore DQN, DDQN, and Dueling architectures to play Atari’s Breakout using TensorFlow
Use A3C to play CartPole and LunarLander
Train an agent to drive a car autonomously in a simulator
About
Advances in reinforcement learning algorithms have made it possible to use them for optimal control in several different industrial applications. With this book, you will apply Reinforcement Learning to a range of problems, from computer games to autonomous driving.

The book starts by introducing you to essential Reinforcement Learning concepts such as agents, environments, rewards, and advantage functions. You will also master the distinctions between on-policy and off-policy algorithms, as well as model-free and model-based algorithms. You will also learn about several Reinforcement Learning algorithms, such as SARSA, Deep Q-Networks (DQN), Deep Deterministic Policy Gradients (DDPG), Asynchronous Advantage Actor-Critic (A3C), Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO). The book will also show you how to code these algorithms in TensorFlow and Python and apply them to solve computer games from OpenAI Gym. Finally, you will also learn how to train a car to drive autonomously in the Torcs racing car simulator.

By the end of the book, you will be able to design, build, train, and evaluate feed-forward neural networks and convolutional neural networks. You will also have mastered coding state-of-the-art algorithms and also training agents for various control problems.

Features
Explore efficient Reinforcement Learning algorithms and code them using TensorFlow and Python
Train Reinforcement Learning agents for problems, ranging from computer games to autonomous driving.
Formulate and devise selective algorithms and techniques in your applications in no time.

contents
1 Up and Running with Reinforcement Learning
2 Temporal Difference, SARSA, and Q-Learning
3 Deep Q-Network
4 Double DQN, Dueling Architectures, and Rainbow
5 Deep Deterministic Policy Gradient
6 Asynchronous Methods – A3C and A2C
7 Trust Region Policy Optimization and Proximal Policy Optimization
8 Deep RL Applied to Autonomous Driving

以下隐藏内容!
仅供捐助用户可见,查看需要1积分,请先

ZIP压缩文内包含(PDF+EPUB+AZW3+MOBI+Code)其一
捐助获取帐号积分点击了解一下
赞(0) 打赏
未经允许不得转载:finelybook » TensorFlow Reinforcement Learning Quick Start Guide: Get up and running with training and deploying intelligent, self-learning agents using Python
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏