Statistics is Easy: Case Studies on Real Scientific Datasets (Synthesis Lectures on Mathematics and Statistics)
by: Sudarshini Tyagi (author) & Manpreet Singh Katari (author) and Dennis Shasha (author)
Publisher finelybook 出版社: Morgan & Claypool Publishers (30 April 2021)
Language 语言: English
Print Length 页数: 74 pages
ISBN-10: 1636390919
ISBN-13: 9781636390918
Book Description
Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis.
Parametric statistical methods assume that the data is a sample from a population that can be characterized by: a specific distribution (e.g.,a normal distribution). When the assumption is true,parametric approaches can lead to high confidence predictions. However,in many cases particular distribution assumptions do not hold. In that case,assuming a distribution may yield false conclusions.
The companion book Statistics is Easy! gave a (nearly) equation-free introduction to nonparametric (i.e.,no distribution assumption) statistical methods. The present book applies data preparation,machine learning,and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use