Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning series)
by: Kevin P. Murphy
ISBN-10: 0262018020
ISBN-13: 9780262018029
Edition 版本: 1
Released: 2012-08-24
Pages: 1104
Today’s Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these,developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning,based on a unified,probabilistic approach. The coverage combines breadth and depth,offering necessary background material on such topics as probability,optimization,and linear algebra as well as discussion of recent developments in the field,including conditional random fields,L1 regularization,and deep learning. The book is written in an informal,accessible style,complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology,text processing,computer vision,and robotics. Rather than providing a cookbook of different heuristic methods,the book stresses a principled model-based approach,often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package — PMTK (probabilistic modeling toolkit) — that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Machine Learning A Probabilistic Perspective 9780262018029.pdf[/erphpdown]
Machine Learning: A Probabilistic Perspective
相关推荐
- Line-of-Business Mobile Apps with Flutter and Dart
- Cisco Certified Support Technician (CCST) IT Support – 100-140 Official Cert Guide
- React Key Concepts: An in-depth guide to React’s core features, 2nd Edition
- Windows 11 Simplified, 2nd Edition
- Artificial Intelligence for Future Networks
- Emerging Trends in Computer Science and Its Application