Machine Learners: Archaeology of a Data Practice

Machine Learners: Archaeology of a Data Practice (MIT Press)9780262036825

Machine Learners: Archaeology of a Data Practice (MIT Press)
by: Adrian Mackenzie
ISBN-10: 0262036827
ISBN-13: 9780262036825
Released: 2017-11-16
Pages: 272

If machine learning transforms the nature of knowledge,does it also transform the practice of critical thought?
Machine learning―programming computers to learn from data―has spread across scientific disciplines,media,entertainment,and government. Medical research,autonomous vehicles,credit transaction processing,computer gaming,recommendation systems,finance,surveillance,and robotics use machine learning. Machine learning devices (sometimes understood as scientific models,sometimes as operational algorithms) anchor the field of data science. They have also become mundane mechanisms deeply embedded in a variety of systems and gadgets. In contexts from the everyday to the esoteric,machine learning is said to transform the nature of knowledge. In this book,Adrian Mackenzie investigates whether machine learning also transforms the practice of critical thinking.
Mackenzie focuses on machine learners―either humans and machines or human-machine relations―situated among settings,data,and devices. The settings range from fMRI to Facebook; the data anything from cat images to DNA sequences; the devices include neural networks,support vector machines,and decision trees. He examines specific learning algorithms―writing code and writing about code―and develops an archaeology of operations that,following Foucault,views machine learning as a form of knowledge production and a strategy of power. Exploring layers of abstraction,data infrastructures,coding practices,diagrams,mathematical formalisms,and the social organization of machine learning,Mackenzie traces the mostly invisible architecture of one of the central zones of contemporary technological cultures.
Mackenzie’s account of machine learning locates places in which a sense of agency can take root. His archaeology of the operational formation of machine learning does not unearth the footprint of a strategic monolith but reveals the local tributaries of force that feed into the generalization and plurality of the field.
1 Introduction: Into the Data
2Diagramming Machines
3 Vectorization and Its Consequences
4 Machines Finding Functions
5 Probalization and the Taming of Machines
6 Patterns and Differences
7 Regularizing and Materializing Objects
8 Propagating Subject Positions
9 Conclusion Out of the Data
machine learners archaeology data practice 9780262036825.pdf

打赏
未经允许不得转载:finelybook » Machine Learners: Archaeology of a Data Practice

评论 抢沙发

觉得文章有用就打赏一下

您的打赏,我们将继续给力更多优质内容

支付宝扫一扫

微信扫一扫