Interpretable Machine Learning: A Guide for Making Black Box Models Explainable


Interpretable Machine Learning: A Guide for Making Black Box Models Explainable
by: Christoph Molnar
Publication Date 出版日期: 2019
Print Length 页数: 251
Language 语言: English
Print Length 页数: PDF
Size: 10 Mb
This book teaches you how to make machine learning models more interpretable.
Machine learning has great potential for improving products,processes and research. But computers usually do not explain their predictions which is a barrier to the adoption of machine learning. This book is about making machine learning models and their decisions interpretable.
After exploring the concepts of interpretability,you will learn about simple,interpretable models such as decision trees,decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME.
All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
The book focuses on machine learning models for tabular data (also called relational or structured data) and less on computer vision and natural language processing tasks. Reading the book is recommended for machine learning practitioners,data scientists,statisticians,and anyone else interested in making machine learning models interpretable.

相关文件下载地址

打赏
未经允许不得转载:finelybook » Interpretable Machine Learning: A Guide for Making Black Box Models Explainable

评论 抢沙发

觉得文章有用就打赏一下

您的打赏,我们将继续给力更多优质内容

支付宝扫一扫

微信扫一扫