Hands-On Deep Learning with Go: A practical guide to building and implementing neural network models using Go


Hands-On Deep Learning with Go: A practical guide to building and implementing neural network models using Go
By 作者: Gareth Seneque - Darrell Chua
ISBN-10 书号: 1789340993
ISBN-13 书号: 9781789340990
Release Finelybook 出版日期: 2019-08-08
pages 页数: (242 )

Book Description to Finelybook sorting
Apply modern deep learning techniques to build and train deep neural networks using Gorgonia
Go is an open source programming language designed by Google for handling large-scale projects efficiently. The Go ecosystem comprises some really powerful deep learning tools such as DQN and CUDA. With this book, you’ll be able to use these tools to train and deploy scalable deep learning models from scratch.
This deep learning book begins by introducing you to a variety of tools and libraries available in Go. It then takes you through building neural networks, including activation functions and the learning algorithms that make neural networks tick. In addition to this, you’ll learn how to build advanced architectures such as autoencoders, restricted Boltzmann machines (RBMs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more. You’ll also understand how you can scale model deployments on the AWS cloud infrastructure for training and inference.
By the end of this book, you’ll have mastered the art of building, training, and deploying deep learning models in Go to solve real-world problems.
What you will learn

Explore the Go ecosystem of libraries and communities for deep learning
Get to grips with Neural Networks, their history, and how they work
Design and implement Deep Neural Networks in Go
Get a strong foundation of concepts such as Backpropagation and Momentum
Build Variational Autoencoders and Restricted Boltzmann Machines using Go
Build models with CUDA and benchmark CPU and GPU models
contents
1 Introduction to Deep Learning in Go
2 What Is a Neural Network and How Do I Train One?
3 Beyond Basic Neural Networks - Autoencoders and RBMs
4 CUDA - GPU-Accelerated Training
5 Next Word Prediction with Recurrent Neural Networks
6 Object Recognition with Convolutional Neural Networks
7 Maze Solving with Deep Q-Networks
8 Generative Models with Variational Autoencoders
9 Building a Deep Learning Pipeline
10 Scaling Deployment

本文中包含更多资源
您需要才可以下载或查看,隐藏内容需5积分,没有帐号? 捐 助 获取帐号
赞(1) 捐助
未经允许不得转载:finelybook » Hands-On Deep Learning with Go: A practical guide to building and implementing neural network models using Go
分享到: 更多 (0)

评论 2

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
  1. #1

    下载的内容不对:Getting Started with Web Components 9781838649234.zip,请再核实。

    13668920105个月前 (11-07)回复

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏