Hands-On Deep Learning for Games: Leverage the power of neural networks and reinforcement learning to build intelligent games


Hands-On Deep Learning for Games: Leverage the power of neural networks and reinforcement learning to build intelligent games
Authors: Micheal Lanham
ISBN-10: 1788994078
ISBN-13: 9781788994071
Publication Date 出版日期: 2019-03-30
Print Length 页数: 392 pages


Book Description
By finelybook

More Information
Learn
Learn the foundations of neural networks and deep learning.
Use advanced neural network architectures in applications to create music,textures,self driving cars and chatbots.
Understand the basics of reinforcement and DRL and how to apply it to solve a variety of problems.
Working with Unity ML-Agents toolkit and how to install,setup and run the kit.
Understand core concepts of DRL and the differences between discrete and continuous action environments.
Use several advanced forms of learning in various scenarios from developing agents to testing games.
About
The number of applications of deep learning and neural networks has multiplied in the last couple of years. Neural nets has enabled significant breakthroughs in everything from computer vision,voice generation,voice recognition and self-driving cars. Game development is also a key area where these techniques are being applied. This book will give an in depth view of the potential of deep learning and neural networks in game development.
We will take a look at the foundations of multi-layer perceptron’s to using convolutional and recurrent networks. In applications from GANs that create music or textures to self-driving cars and chatbots. Then we introduce deep reinforcement learning through the multi-armed bandit problem and other OpenAI Gym environments.
As we progress through the book we will gain insights about DRL techniques such as Motivated Reinforcement Learning with Curiosity and Curriculum Learning. We also take a closer look at deep reinforcement learning and in particular the Unity ML-Agents toolkit. By the end of the book,we will look at how to apply DRL and the ML-Agents toolkit to enhance,test and automate your games or simulations. Finally,we will cover your possible next steps and possible areas for future learning.
Features
Apply the power of deep learning to complex reasoning tasks by building a Game AI
Exploit the most recent developments in machine learning and AI for building smart games
Implement deep learning models and neural networks with Python
contents
1 Deep Learning for Games
2 Convolutional and Recurrent Networks
3 GAN for Games
4 Building a Deep Learning Gaming Chatbot
5 Introducing DRL
6 Unity ML-Agents
7 Agent and the Environment
8 Understanding PPO
9 Rewards and Reinforcement Learning
10 Imitation and Transfer Learning
11 Building Multi-Agent Environments
12 Debugging/Testing a Game with DRL
13 Obstacle Tower Challenge and Beyond

相关文件下载地址

下载地址 Download解决验证以访问链接!
打赏
未经允许不得转载:finelybook » Hands-On Deep Learning for Games: Leverage the power of neural networks and reinforcement learning to build intelligent games

评论 抢沙发

觉得文章有用就打赏一下

您的打赏,我们将继续给力更多优质内容

支付宝扫一扫

微信扫一扫