Getting Started with Amazon SageMaker Studio: Learn to build end-to-end machine learning projects in the SageMaker machine learning IDE

Getting Started with Amazon SageMaker Studio: Learn to build end-to-end machine learning projects in the SageMaker machine learning IDE
Author: Michael Hsieh (Author)
Publisher Finelybook 出版社:Packt Publishing (March 31, 2022)
Language 语言:English
pages 页数:326 pages
ISBN-10 书号:1801070156
ISBN-13 书号:9781801070157

Book Description
Build production-grade machine learning models with Amazon SageMaker Studio, the first integrated development environment in the cloud, using real-life machine learning examples and code

Key Features

Understand the ML lifecycle in the cloud and its development on Amazon SageMaker Studio
Learn to apply SageMaker features in SageMaker Studio for ML use cases
Scale and operationalize the ML lifecycle effectively using SageMaker Studio
Amazon SageMaker Studio is the first integrated development environment (IDE) for machine learning (ML) and is designed to integrate ML workflows: data preparation, feature engineering, statistical bias detection, automated machine learning (AutoML), training, hosting, ML explainability, monitoring, and MLOps in one environment.

In this book, you’ll start Author: exploring the features available in Amazon SageMaker Studio to analyze data, develop ML models, and productionize models to meet your goals. As you progress, you will learn how these features work together to address common challenges when building ML models in production. After that, you’ll understand how to effectively scale and operationalize the ML life cycle using SageMaker Studio.

Author: the end of this book, you’ll have learned ML best practices regarding Amazon SageMaker Studio, as well as being able to improve productivity in the ML development life cycle and build and deploy models easily for your ML use cases.

What you will learn

Explore the ML development life cycle in the cloud
Understand SageMaker Studio features and the user interface
Build a dataset with clicks and host a feature store for ML
Train ML models with ease and scale
Create ML models and solutions with little code
Host ML models in the cloud with optimal cloud resources
Ensure optimal model performance with model monitoring
Apply governance and operational excellence to ML projects

下载地址 Download隐藏内容需1积分,VIP免费,请先 !没有帐号? 注 册 一个!
觉得文章有用就打赏一下
未经允许不得转载:finelybook » Getting Started with Amazon SageMaker Studio: Learn to build end-to-end machine learning projects in the SageMaker machine learning IDE

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

觉得文章有用就打赏一下

非常感谢你的打赏,我们将继续给力更多优质内容,让我们一起创建更加美好的网络世界!

支付宝扫一扫打赏

微信扫一扫打赏