Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics


Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics (Advances in Computer Vision and Pattern Recognition)
By 作者: Le Lu
ISBN-10 书号: 3030139689
ISBN-13 书号: 9783030139681
Edition 版本: 1st ed. 2019
Release Finelybook 出版日期: 2019-09-20
pages 页数: (461 )

Book Description to Finelybook sortingThis book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory.
The book’s chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval.
The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation.


Part l.Segmentation
1.Pancreas Segmentation in CT and MRI via Task-Specific Network Design and Recurent Neural Contextual Learning
2.Deep Learning for Muscle Pathology Image Analysis
3.2D-Based Coarse-to-Fine Approaches for Small Target Segmentation in Abdominal CT Scans
4.Volumetric Medical Image Segmentation:A 3D Deep Coarse-to-Fine Framework and Its Adversarial Examples
5.Unsupervised Domain Adaptation of ConvNets for Medical lmage Segmentation via Adversarial Learning
Part lⅡ.Detection and Localization
6.Glaucoma Detection Based on Deep Learning Network in Fundus Image
7.Thoracic Disease Identification and Localization with Limited Supervision
8.Deep Reinforcement Learning for Detecting Breast Lesions from DCE-MRI
9.Automatic Vertebra Labeling in Large-Scale Medical lmages Using Deep Image-to-lmage Network with Message Passing and Sparsity Regularization
10.Anisotropic Hybrid Network for Cross-Dimension Transferable Feature Learning in 3D Medical lmages
Part ll.Various Applications
11.Deep Hashing and Its Application for Histopathology Image Analysis
12.Tumor Growth Prediction Using Convolutional Networks
13.Deep Spatial-Temporal Convolutional Neural Networks for Medical lmage Restoration
14.Generative Low-Dose CT Image Denoising
15.Image Quality Assessment for Population Cardiac Magnetic Resonance lmaging
16.Agent-Based Methods for Medical lmage Registration
17.Deep Learning for Functional Brain Connectivity:Are We There Yet?
Part IV.Large-Scale Data Mining and Data Synthesis
18.ChestX-ray:Hospital-Scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases
19.Automatic Classification and Reporting of Multiple Common Thorax Diseases Using Chest Radiographs
20.Deep Lesion Graph in the Wild:Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-Scale Lesion Database
21.Simultaneous Super-Resolution and Cross-Modality Synthesis in Magnetic Resonance lmaging

本文中包含更多资源
您需要才可以下载或查看,隐藏内容需1积分,没有帐号? 捐 助 获取帐号
赞(1) 捐助
未经允许不得转载:finelybook » Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏