Bayesian Statistics and Marketing (WILEY SERIES IN PROB & STATISTICS/see 1345/6,6214/5)
Author: Peter E. Rossi (Author), Greg M. Allenby (Author), Sanjog Misra (Author) & 0 more
Publisher finelybook 出版社: Wiley
Edition 版本: 2nd
Publication Date 出版日期: 2024-07-15
Language 语言: English
Print Length 页数: 400 pages
ISBN-10: 1394219113
ISBN-13: 9781394219117
Book Description
Fine-tune your marketing research with this cutting-edge statistical toolkit
Bayesian Statistics and Marketing illustrates the potential for applying a Bayesian approach to some of the most challenging and important problems in marketing. Analyzing household and consumer data, predicting product performance, and custom-targeting campaigns are only a few of the areas in which Bayesian approaches promise revolutionary results. This book provides a comprehensive, accessible overview of this subject essential for any statistically informed marketing researcher or practitioner.
Economists and other social scientists will find a comprehensive treatment of many Bayesian methods that are central to the problems in social science more generally. This includes a practical approach to computationally challenging problems in random coefficient models, non-parametrics, and the problems of endogeneity.
Readers of the second edition of Bayesian Statistics and Marketing will also find:
- Discussion of Bayesian methods in text analysis and Machine Learning
- Updates throughout reflecting the latest research and applications
- Discussion of modern statistical software, including an introduction to the R package bayesm, which implements all models incorporated here
- Extensive case studies throughout to link theory and practice
Bayesian Statistics and Marketing is ideal for advanced students and researchers in marketing, business, and economics departments, as well as for any statistically savvy marketing practitioner.
From the Back Cover
Fine-tune your marketing research with this cutting-edge statistical toolkit
Bayesian Statistics and Marketing illustrates the potential for applying a Bayesian approach to some of the most challenging and important problems in marketing. Analyzing household and consumer data, predicting product performance, and custom-targeting campaigns are only a few of the areas in which Bayesian approaches promise revolutionary results. This book provides a comprehensive, accessible overview of this subject essential for any statistically informed marketing researcher or practitioner.
Economists and other social scientists will find a comprehensive treatment of many Bayesian methods that are central to the problems in social science more generally. This includes a practical approach to computationally challenging problems in random coefficient models, non-parametrics, and the problems of endogeneity.
Readers of the second edition of Bayesian Statistics and Marketing will also find:
- Discussion of Bayesian methods in text analysis and Machine Learning
- Updates throughout reflecting the latest research and applications
- Discussion of modern statistical software, including an introduction to the R package bayesm, which implements all models incorporated here
- Extensive case studies throughout to link theory and practice
Bayesian Statistics and Marketing is ideal for advanced students and researchers in marketing, business, and economics departments, as well as for any statistically savvy marketing practitioner.
About the Author
Peter Rossi is James Collins Distinguished University Professor of Marketing, Economics, and Statistics at the Anderson School of Management, UCLA, USA. He is the author of the popular R package, bayesm, and he has researched and published extensively on pricing and promotion, target marketing, and other related subjects.
Greg Allenby is Helen C. Kurtz Professor of Marketing as well as Professor of Statistics at the Fisher College of Business, Ohio State University, USA. He is a Fellow of the Informs Society for Marketing Science and the American Statistical Association, and he has published widely on the development and application of quantitative methods in marketing.
Sanjog Misra is Charles H. Kellstadt Professor of Marketing in the Booth School of Business, University of Chicago, USA. He has served as the co-editor of numerous high-impact journals, including Quantiative Marketing and Economics, and his research focuses on the use of machine learning and deep learning to study consumer and firm decisions.
下载地址
相关推荐
- Hands-on Cryptography with Python: Master Cryptographic Foundations with Real-World Implementation for Secure System Development Using Python
- Ultimate Generative AI Solutions on Google Cloud
- Learning PHP, MySQL & JavaScript: A Step-by-Step Guide to Creating Dynamic Websites, 7th Edition
- Business Process Analytics: Modeling, Simulation and Design, 4th Edition
- Calculus: Early Transcendental Functions, 8th Edition
- Build a Robo-Advisor with Python (From Scratch): Automate your financial and investment decisions