Bayesian Modeling and Computation in Python

Bayesian Modeling and Computation in Python (Chapman & Hall/CRC Texts in Statistical Science)
29 Dec. 2021
Author:Osvaldo A. Martin,Ravin Kumar ,Junpeng Lao (Author)
Publisher Finelybook 出版社:Chapman and Hall/CRC; 1st edition (29 Dec. 2021)
Language 语言:English
pages 页数:398 pages
ISBN-10 书号:036789436X
ISBN-13 书号:9780367894368

Book Description
Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory.

The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book Author:getting closer into mathematical aspects or Author:extending the discussion of certain topics.

This book is written Author:contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries.

隐藏内容1积分,请先!没有帐号? 注 册 一个!
未经允许不得转载:finelybook » Bayesian Modeling and Computation in Python

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址