Amazon SageMaker Best Practices:Proven tips and tricks to build successful machine learning solutions on Amazon SageMaker

Amazon SageMaker Best Practices:Proven tips and tricks to build successful machine learning solutions on Amazon SageMaker
24 Sept. 2021
Author:Sireesha Muppala ,Randy DeFauw ,Shelbee Eigenbrode (Author)
Publisher Finelybook 出版社:Packt Publishing (24 Sept. 2021)
Language 语言:English
pages 页数:348 pages
ISBN-10 书号:1801070520
ISBN-13 书号:9781801070522

Book Description
Overcome advanced challenges in building end-to-end ML solutions Author:leveraging the capabilities of Amazon SageMaker for developing and integrating ML models into production

Key Features

Learn best practices for all phases of building machine learning solutions – from data preparation to monitoring models in production
Automate end-to-end machine learning workflows with Amazon SageMaker and related AWS
Design, architect, and operate machine learning workloads in the AWS Cloud
Amazon SageMaker is a fully managed AWS service that provides the ability to build, train, deploy, and monitor machine learning models. The book begins with a high-level overview of Amazon SageMaker capabilities that map to the various phases of the machine learning process to help set the right foundation. You’ll learn efficient tactics to address data science challenges such as processing data at scale, data preparation, connecting to big data pipelines, identifying data bias, running A/B tests, and model explainability using Amazon SageMaker. As you advance, you’ll understand how you can tackle the challenge of training at scale, including how to use large data sets while saving costs, monitoring training resources to identify bottlenecks, speeding up long training jobs, and tracking multiple models trained for a common goal. Moving ahead, you’ll find out how you can integrate Amazon SageMaker with other AWS to build reliable, cost-optimized, and automated machine learning applications. In addition to this, you’ll build ML pipelines integrated with MLOps principles and apply best practices to build secure and performant solutions.

Author:the end of the book, you’ll confidently be able to apply Amazon SageMaker’s wide range of capabilities to the full spectrum of machine learning workflows.

What you will learn

Perform data bias detection with AWS Data Wrangler and SageMaker Clarify
Speed up data processing with SageMaker Feature Store
Overcome labeling bias with SageMaker Ground Truth
Improve training time with the monitoring and profiling capabilities of SageMaker Debugger
Address the challenge of model deployment automation with CI/CD using the SageMaker model registry
Explore SageMaker Neo for model optimization
Implement data and model quality monitoring with Amazon Model Monitor
Improve training time and reduce costs with SageMaker data and model parallelism

隐藏内容1积分,请先!没有帐号? 注 册 一个!
觉得文章有用就打赏一下
未经允许不得转载:finelybook » Amazon SageMaker Best Practices:Proven tips and tricks to build successful machine learning solutions on Amazon SageMaker

觉得文章有用就打赏一下

非常感谢你的打赏,我们将继续给力更多优质内容,让我们一起创建更加美好的网络世界!

支付宝扫一扫打赏

微信扫一扫打赏