Robust Adaptive Dynamic Programming

Robust Adaptive Dynamic Programming (IEEE Press Series on Systems Science and Engineering)

Robust Adaptive Dynamic Programming (IEEE Press Series on Systems Science and Engineering)

Author: Yu Jiang , Zhong-Ping Jiang

Publisher finelybook 出版社:‏ ‎ Wiley-IEEE Press

Edition 版本:‏ 1st edition

Publication Date 出版日期:‏ 2017-05-08

Language 语言: English

Print Length 页数: 216 pages

ISBN-10: 1119132649

ISBN-13: 9781119132646

Book Description

A comprehensive look at state-of-the-art ADP theory and real-world applications

This book fills a gap in the literature by providing a theoretical framework for integrating techniques from adaptive dynamic programming (ADP) and modern nonlinear control to address data-driven optimal control design challenges arising from both parametric and dynamic uncertainties.

Traditional model-based approaches leave much to be desired when addressing the challenges posed by the ever-increasing complexity of real-world engineering systems. An alternative which has received much interest in recent years are biologically-inspired approaches, primarily RADP. Despite their growing popularity worldwide, until now books on ADP have focused nearly exclusively on analysis and design, with scant consideration given to how it can be applied to address robustness issues, a new challenge arising from dynamic uncertainties encountered in common engineering problems. 

Robust Adaptive Dynamic Programming zeros in on the practical concerns of engineers. The authors develop RADP theory from linear systems to partially-linear, large-scale, and completely nonlinear systems. They provide in-depth coverage of state-of-the-art applications in power systems, supplemented with numerous real-world examples implemented in MATLAB. They also explore fascinating reverse engineering topics, such how ADP theory can be applied to the study of the human brain and cognition. In addition, the book:  

  • Covers the latest developments in RADP theory and applications for solving a range of systems’ complexity problems
  • Explores multiple real-world implementations in power systems with illustrative examples backed up by reusable MATLAB code and Simulink block sets
  • Provides an overview of nonlinear control, machine learning, and dynamic control
  • Features discussions of novel applications for RADP theory, including an entire chapter on how it can be used as a computational mechanism of human movement control

Robust Adaptive Dynamic Programming is both a valuable working resource and an intriguing exploration of contemporary ADP theory and applications for practicing engineers and advanced students in systems theory, control engineering, computer science, and applied mathematics.

From the Inside Flap

A comprehensive look at state-of-the-art ADP theory and real-world applications

This book fills a gap in the literature by providing a theoretical framework for integrating techniques from adaptive dynamic programming (ADP) and modern nonlinear control to address data-driven optimal control design challenges arising from both parametric and dynamic uncertainties.

Traditional model-based approaches leave much to be desired when addressing the challenges posed by the ever-increasing complexity of real-world engineering systems. An alternative which has received much interest in recent years are biologically-inspired approaches, primarily RADP. Despite their growing popularity worldwide, until now books on ADP have focused nearly exclusively on analysis and design, with scant consideration given to how it can be applied to address robustness issues, a new challenge arising from dynamic uncertainties encountered in common engineering problems.

Robust Adaptive Dynamic Programming zeros in on the practical concerns of engineers. The authors develop RADP theory from linear systems to partially-linear, large-scale, and completely nonlinear systems. They provide in-depth coverage of state-of-the-art applications in power systems, supplemented with numerous real-world examples implemented in MATLAB. They also explore fascinating reverse engineering topics, such how ADP theory can be applied to the study of the human brain and cognition. In addition, the book:

  • Covers the latest developments in RADP theory and applications for solving a range of systems’ complexity problems
  • Explores multiple real-world implementations in power systems with illustrative examples backed up by reusable MATLAB code and Simulink block sets
  • Provides an overview of nonlinear control, machine learning, and dynamic control
  • Features discussions of novel applications for RADP theory, including an entire chapter on how it can be used as a computational mechanism of human movement control

Robust Adaptive Dynamic Programming is both a valuable working resource and an intriguing exploration of contemporary ADP theory and applications for practicing engineers and advanced students in systems theory, control engineering, computer science, and applied mathematics.

From the Back Cover

A comprehensive look at state-of-the-art ADP theory and real-world applications

This book fills a gap in the literature by providing a theoretical framework for integrating techniques from adaptive dynamic programming (ADP) and modern nonlinear control to address data-driven optimal control design challenges arising from both parametric and dynamic uncertainties.

Traditional model-based approaches leave much to be desired when addressing the challenges posed by the ever-increasing complexity of real-world engineering systems. An alternative which has received much interest in recent years are biologically-inspired approaches, primarily RADP. Despite their growing popularity worldwide, until now books on ADP have focused nearly exclusively on analysis and design, with scant consideration given to how it can be applied to address robustness issues, a new challenge arising from dynamic uncertainties encountered in common engineering problems.

Robust Adaptive Dynamic Programming zeros in on the practical concerns of engineers. The authors develop RADP theory from linear systems to partially-linear, large-scale, and completely nonlinear systems. They provide in-depth coverage of state-of-the-art applications in power systems, supplemented with numerous real-world examples implemented in MATLAB. They also explore fascinating reverse engineering topics, such how ADP theory can be applied to the study of the human brain and cognition. In addition, the book:

  • Covers the latest developments in RADP theory and applications for solving a range of systems’ complexity problems
  • Explores multiple real-world implementations in power systems with illustrative examples backed up by reusable MATLAB code and Simulink block sets
  • Provides an overview of nonlinear control, machine learning, and dynamic control
  • Features discussions of novel applications for RADP theory, including an entire chapter on how it can be used as a computational mechanism of human movement control

Robust Adaptive Dynamic Programming is both a valuable working resource and an intriguing exploration of contemporary ADP theory and applications for practicing engineers and advanced students in systems theory, control engineering, computer science, and applied mathematics.

Amazon Page

下载地址

PDF | 2 MB | 2019-05-12
下载地址 Download解决验证以访问链接!
打赏
未经允许不得转载:finelybook » Robust Adaptive Dynamic Programming

评论 抢沙发

觉得文章有用就打赏一下

您的打赏,我们将继续给力更多优质内容

支付宝扫一扫

微信扫一扫