Practical Simulations for Machine Learning: Using Synthetic Data for AI 1st Edition
Author: Paris Buttfield-Addison,Mars Buttfield-Addison,Tim Nugent,Jon Manning(Author)
Publisher finelybook 出版社: O’Reilly Media; 1st edition (July 19, 2022)
Language 语言: English
Print Length 页数: 331 pages
ISBN-10: 1492089923
ISBN-13: 9781492089926
Book Description
Simulation and synthesis are core parts of the future of AI and machine learning. Consider: programmers, data scientists, and machine learning engineers can create the brain of a self-driving car without the car. Rather than use information from the real world, you can create artificial data using simulations to train traditional machine learning models. That’s just the beginning.
With this practical book, you’ll explore the possibilities of simulation- and synthesis-based machine learning and AI, concentrating on deep reinforcement learning and imitation learning techniques. AI and ML are increasingly data driven, and simulations are a powerful, engaging way to unlock their full potential.
With this practical book, you’ll learn how to:
Design an approach for solving ML and AI problems using simulations
Use a game engine to synthesize images for use as training data
Create simulation environments designed for training deep reinforcement learning and imitation learning
Use and apply efficient general-purpose algorithms for simulation-based ML, such as proximal policy optimization (PPO)
Train ML models locally, concurrently, and in the cloud
Enable ML tools to work with industry-standard game development tools, using PyTorch, TensorFlow, and the Unity ML-Agents and Web Perception Toolkits