Neural Networks and Deep Learning: A Textbook


Neural Networks and Deep Learning: A Textbook
By 作者: Charu C. Aggarwal
ISBN-10 书号: 3319944622
ISBN-13 书号: 9783319944623
Edition 版本: 1st ed. 2018
Release Finelybook 出版日期: 2018-08-26
pages 页数: (497

$69.99
This book covers both classical and modern models in deep learning. The chapters of this book span three categories:
The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec.
Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines.
Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10.
The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques

下载地址
仅供注册用户可见,此资源下载价格为0.1积分,请先

下载前先升级VIP或点立即购买,即可获取下载地址

捐助 即送35积分
点击了解一下

赞(0) 赞赏
未经允许不得转载:finelybook » Neural Networks and Deep Learning: A Textbook
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

觉得文章有用就赞赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏