Mitigating Bias in Machine Learning
Author:Carlotta A. Berry (Author), Brandeis Hill Marshall (Author)
Publisher finelybook 出版社: McGraw Hill
Publication Date 出版日期: 2024-10-02
Edition 版本: 1st
Language 语言: English
Print Length 页数: 304 pages
ISBN-10: 1264922442
ISBN-13: 9781264922444
Book Description
This practical guide shows, step by step, how to use machine learning to carry out actionable decisions that do not discriminate based on numerous human factors, including ethnicity and gender. The authors examine the many kinds of bias that occur in the field today and provide mitigation strategies that are ready to deploy across a wide range of technologies, applications, and industries.
Edited by engineering and computing experts, Mitigating Bias in Machine Learning includes contributions from recognized scholars and professionals working across different artificial intelligence sectors. Each chapter addresses a different topic and real-world case studies are featured throughout that highlight discriminatory machine learning practices and clearly show how they were reduced.
Mitigating Bias in Machine Learning addresses:
- Ethical and Societal Implications of Machine Learning
- Social Media and Health Information Dissemination
- Comparative Case Study of Fairness Toolkits
- Bias Mitigation in Hate Speech Detection
- Unintended Systematic Biases in Natural Language Processing
- Combating Bias in Large Language Models
- Recognizing Bias in Medical Machine Learning and AI Models
- Machine Learning Bias in Healthcare
- Achieving Systemic Equity in Socioecological Systems
- Community Engagement for Machine Learning
About the Author
Brandeis Hill Marshall is founder and CEO of DataedX Group, a data ethics learning and development agency. She is a thought leader in broadening participating in data science and puts inclusivity and equity at the center of her work. She obtained her doctorate in Computer Science from Rensselaer Polytechnic Institute.