Mathematical Optimization for Machine Learning: Proceedings of the MATH+ Thematic Einstein Semester 2023

Mathematical Optimization for Machine Learning: Proceedings of the MATH+ Thematic Einstein Semester 2023 (De Gruyter Proceedings in Mathematics)

Mathematical Optimization for Machine Learning: Proceedings of the MATH+ Thematic Einstein Semester 2023 (De Gruyter Proceedings in Mathematics)

Author: Konstantin Fackeldey (Editor), Aswin Kannan (Editor), Sebastian Pokutta (Editor), Kartikey Sharma (Editor), Daniel Walter (Editor), Andrea Walther (Editor), Martin Weiser (Editor)

Publisher finelybook 出版社:‏ De Gruyter

Publication Date 出版日期: 2025-05-06

Edition 版本:‏ 1st

Language 语言: English

Print Length 页数: 212 pages

ISBN-10: 3111375854

ISBN-13: 9783111375854

Book Description

Mathematical optimization and machine learning are closely related. This proceedings volume of the Thematic Einstein Semester 2023 of the Berlin Mathematics Research Center MATH+ collects recent progress on their interplay in topics such as discrete optimization, nonlinear programming, optimal control, first-order methods, multilevel optimization, machine learning in optimization, physics-informed learning, and fairness in machine learning.

About the Author

M. Weiser, S. Pokutta, K. Sharma, ZIB, Germany; K. Fackeldey, TU Berlin; A. Kannan, D. Walter, A. Walther, Humboldt-Univ. Germany.

Amazon Page

下载地址

PDF, EPUB | 24 MB | 2025-05-20
下载地址 Download解决验证以访问链接!
打赏
未经允许不得转载:finelybook » Mathematical Optimization for Machine Learning: Proceedings of the MATH+ Thematic Einstein Semester 2023

评论 抢沙发

觉得文章有用就打赏一下

您的打赏,我们将继续给力更多优质内容

支付宝扫一扫

微信扫一扫