Machine Learning with Go Quick Start Guide: Hands-on techniques for building supervised and unsupervised machine learning workflows


Machine Learning with Go Quick Start Guide: Hands-on techniques for building supervised and unsupervised machine learning workflows
Authors: Michael Bironneau – Toby Coleman
ISBN-10: 1838550356
ISBN-13: 9781838550356
Released: 2019-05-31
Print Length 页数: 168 pages

Book Description


This quick start guide will bring the readers to a basic level of understanding when it comes to the Machine Learning (ML) development lifecycle,will introduce Go ML libraries and then will exemplify common ML methods such as Classification,Regression,and Clustering
Machine learning is an essential part of today’s data-driven world and is extensively used across industries,including financial forecasting,robotics,and web technology. This book will teach you how to efficiently develop machine learning applications in Go.
The book starts with an introduction to machine learning and its development process,explaining the types of problems that it aims to solve and the solutions it offers. It then covers setting up a frictionless Go development environment,including running Go interactively with Jupyter notebooks. Finally,common data processing techniques are introduced.
The book then teaches the reader about supervised and unsupervised learning techniques through worked examples that include the implementation of evaluation metrics. These worked examples make use of the prominent open-source libraries GoML and Gonum.
The book also teaches readers how to load a pre-trained model and use it to make predictions. It then moves on to the operational side of running machine learning applications: deployment,Continuous Integration,and helpful advice for effective logging and monitoring.
At the end of the book,readers will learn how to set up a machine learning project for success,formulating realistic success criteria and accurately translating business requirements into technical ones.
What you will learn
Understand the types of problem that machine learning solves,and the various approaches
Import,pre-process,and explore data with Go to make it ready for machine learning algorithms
Visualize data with gonum/plot and Gophernotes
Diagnose common machine learning problems,such as overfitting and underfitting
Implement supervised and unsupervised learning algorithms using Go libraries
Build a simple web service around a model and use it to make predictions
contents
1 Introducing Machine Learning with Go
2 Setting Up the Development Environment
3 Supervised Learning
4 Unsupervised Learning
5 Using Pretrained Models
6 Deploying Machine Learning Applications
7 Conclusion – Successful ML Projects

下载地址 Download解决验证以访问链接!
打赏
未经允许不得转载:finelybook » Machine Learning with Go Quick Start Guide: Hands-on techniques for building supervised and unsupervised machine learning workflows

评论 抢沙发

觉得文章有用就打赏一下

您的打赏,我们将继续给力更多优质内容

支付宝扫一扫

微信扫一扫