Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications
Author: Hoss Belyadi (Author), Alireza Haghighat (Author)
Publisher finelybook 出版社: Gulf Professional Publishing
Edition 版本: 1st
Publication Date 出版日期: 2021-04-27
Language 语言: English
Print Length 页数: 476 pages
ISBN-10: 0128219297
ISBN-13: 9780128219294
Book Description
Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges.
- Helps readers understand how open-source Python can be utilized in practical oil and gas challenges
- Covers the most commonly used algorithms for both supervised and unsupervised learning
- Presents a balanced approach of both theory and practicality while progressing from introductory to advanced analytical techniques
Review
About the Author
Dr. Alireza Haghighat is a senior technical advisor and instructor for Engineering Solutions at IHS Markit, focusing on reservoir/production engineering and data analytics. Prior to joining IHS, he was a senior reservoir engineer at Eclipse/Montage resources for nearly five years. As a reservoir engineer, he was involved in well performance evaluation with data analytics, rate transient analysis of unconventional assets (Utica and Marcellus), asset development, hydraulic fracture/reservoir simulation, DFIT analysis, and reserve evaluation. He has been an adjunct faculty member at Pennsylvania State University (PSU) for the past 5 years, teaching courses in Petroleum Engineering/Energy, Business and Finance departments. Dr. Haghighat has published several technical papers and book chapters on machine learning applications in smart wells, CO2 sequestration modeling, and production analysis of unconventional reservoirs. He has received his PhD in petroleum and natural gas engineering from West Virginia University and a master’s degree in petroleum engineering from Delft University of Technology.
相关文件下载地址
相关推荐
- Microsoft 365 Copilot At Work: Using AI to Get the Most from Your Business Data and Favorite Apps
- Real-World Edge Computing: Scale, secure, and succeed in the realm of edge computing with Open Horizon
- Segment Routing in MPLS Networks: Transition from traditional MPLS to SR-MPLS with TI-LFA FRR
- Managing Project Risks, 2nd Edition
- Introduction to Python Programming
- FastAPI Cookbook: Develop high-performance APIs and web applications with Python