Machine Learning for Planetary Science


Machine Learning for Planetary Science
Author: Joern Helbert,Mario D’Amore,Michael Aye,Hannah Kerner (Editor)
Publisher finelybook 出版社: Elsevier; (April 8, 2022)
Language 语言: English
Print Length 页数: 232 pages
ISBN-10: 0128187212
ISBN-13: 9780128187210


Book Description
By finelybook

Machine Learning for Planetary Science presents planetary scientists with a way to introduce machine learning into the research workflow as increasingly large nonlinear datasets are acquired from planetary exploration missions. The book explores research that leverages machine learning methods to enhance our scientific understanding of planetary data and serves as a guide for selecting the right methods and tools for solving a variety of everyday problems in planetary science using machine learning. Illustrating ways to employ machine learning in practice with case studies, the book is clearly organized into four parts to provide thorough context and easy navigation.
The book covers a range of issues, from data analysis on the ground to data analysis onboard a spacecraft, and from prioritization of novel or interesting observations to enhanced missions planning. This book is therefore a key resource for planetary scientists working in data analysis, missions planning, and scientific observation.

相关文件下载地址

打赏
未经允许不得转载:finelybook » Machine Learning for Planetary Science

评论 抢沙发

觉得文章有用就打赏一下

您的打赏,我们将继续给力更多优质内容

支付宝扫一扫

微信扫一扫