Machine Learning Algorithms in Depth
Author: Vadim Smolyakov (Author)
Publisher finelybook 出版社: Manning
Publication Date 出版日期: 2024-08-20
Language 语言: English
Print Length 页数: 328 pages
ISBN-10: 1633439216
ISBN-13: 9781633439214
Book Description
Learn how machine learning algorithms work from the ground up so you can effectively troubleshoot your models and improve their performance.
Fully understanding how machine learning algorithms function is essential for any serious ML engineer. In
Machine Learning Algorithms in Depth you’ll explore practical implementations of dozens of ML algorithms including:• Monte Carlo Stock Price Simulation
• Image Denoising using Mean-Field Variational Inference
• EM algorithm for Hidden Markov Models
• Imbalanced Learning, Active Learning and Ensemble Learning
• Bayesian Optimization for Hyperparameter Tuning
• Dirichlet Process K-Means for Clustering Applications
• Stock Clusters based on Inverse Covariance Estimation
• Energy Minimization using Simulated Annealing
• Image Search based on ResNet Convolutional Neural Network
• Anomaly Detection in Time-Series using Variational Autoencoders
Machine Learning Algorithms in Depth dives into the design and underlying principles of some of the most exciting machine learning (ML) algorithms in the world today. With a particular emphasis on probabilistic algorithms, you’ll learn the fundamentals of Bayesian inference and deep learning. You’ll also explore the core data structures and algorithmic paradigms for machine learning. Each algorithm is fully explored with both math and practical implementations so you can see how they work and how they’re put into action.
Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications.
About the technology
Learn how machine learning algorithms work from the ground up so you can effectively troubleshoot your models and improve their performance. This book guides you from the core mathematical foundations of the most important ML algorithms to their Python implementations, with a particular focus on probability-based methods.
About the book
Machine Learning Algorithms in Depth dissects and explains dozens of algorithms across a variety of applications, including finance, computer vision, and NLP. Each algorithm is mathematically derived, followed by its hands-on Python implementation along with insightful code annotations and informative graphics. You’ll especially appreciate author Vadim Smolyakov’s clear interpretations of Bayesian algorithms for Monte Carlo and Markov models.
What’s inside
• Monte Carlo stock price simulation
• EM algorithm for hidden Markov models
• Imbalanced learning, active learning, and ensemble learning
• Bayesian optimization for hyperparameter tuning
• Anomaly detection in time-series
For machine learning practitioners familiar with linear algebra, probability, and basic calculus.
About the author
Vadim Smolyakov is a data scientist in the Enterprise & Security DI R&D team at Microsoft.
Table of Contents
PART 1
1 Machine learning algorithms
2 Markov chain Monte Carlo
3 Variational inference
4 Software implementation
PART 2
5 Classification algorithms
6 Regression algorithms
7 Selected supervised learning algorithms
PART 3
8 Fundamental unsupervised learning algorithms
9 Selected unsupervised learning algorithms
PART 4
10 Fundamental deep learning algorithms
11 Advanced deep learning algorithms
From the Back Cover
Machine Learning Algorithms in Depth dives deep into the ‘how’ and the ‘why’ of machine learning algorithms. For each category of an algorithm, you will go from math-first principles to hands-on implementation in Python. You will explore dozens of examples from across all the fields of machine learning, including finance, computer vision, NLP, and more. Each example is accompanied by worked-out derivations and details as well as insightful code samples and graphics. By the time you’re done reading, you will know how major algorithms work under the hood — and be a better machine learning practitioner.
About the reader
For intermediate machine learning practitioners familiar with linear algebra, probability, and basic calculus.
About the Author
相关文件下载地址
相关推荐
- Deep Learning Applications of Short-range Radars
- Microsoft SharePoint Premium in the Real World: Bringing Practical Cloud AI to Content Management
- Programming Language Fundamentals: A Metalanguage Approach in Elm
- Game Development Patterns with Godot 4: Create resilient game systems using industry-proven solutions in Godot
- Mastering Windows 365: Deploy and Manage Cloud PCs and Windows 365 Link devices, Copilot with Intune, and Intune Suite 2nd edition
- An Introduction to Partial Differential Equations with MATLAB, 3rd Edition