Introduction to Autonomous Robots: Kinematics,Perception,Localization and Planning
by: Nikolaus Correll
ISBN-10: 0692700870
ISBN-13: 9780692700877
Edition 版次: 2
Publication Date 出版日期: 2016-04-25
Print Length 页数: 226
This book introduces concepts in mobile,autonomous robotics to 3rd-4th year students in Computer Science or a related discipline. The book covers principles of robot motion,forward and inverse kinematics of robotic arms and simple wheeled platforms,perception,error propagation,localization and simultaneous localization and mapping. The cover picture shows a wind-up toy that is smart enough to not fall off a table just using intelligent mechanism design and illustrate the importance of the mechanism in designing intelligent,autonomous systems. This book is open source,open to contributions,and released under a creative common license.
Contents
Chapter 1. Introduction
Chapter 2. Locomotion and Manipulation
Chapter 3. Forward and Inverse Kinematics
Chapter 4. Path Planning
Chapter 5. Sensors
Chapter 6. Vision
Chapter 7. Feature extraction
Chapter 8. Uncertainty and Error Propagation
Chapter 9. Localization
Chapter 10. Grasping
Chapter 11. Simultaneous Localization and Mapping
Chapter 12. RGB-D SLAM
Appendix A. Trigonometry
Appendix B. Linear Algebra
Appendix C. Statistics
Appendix D. How to write a research paper
Appendix E. Sample curricula
本书介绍了移动,自主机器人到计算机科学第3 – 4年级学生或相关学科的概念。本书涵盖机器人运动原理,机器人臂和简单轮式平台的前向和反向运动学,感知,误差传播,定位和同时定位和映射。封面图片显示了一个足够聪明的缠绕玩具,不能使用智能机构设计脱落桌子,并说明机制在设计智能,自主系统中的重要性。这本书是开源的,开放贡献,并根据创意共同许可发布。
目录
第一章介绍
第二章运动与操纵
前进和反向运动学
第四章路径规划
传感器
第六章愿景
第7章特征提取
第八章不确定性和错误传播
第九章本地化
第10章掌握
第11章同步本地化和映射
第十二章RGB-D SLAM
附录A.三角法
线性代数
统计资料
附录D.如何撰写研究论文
附录E.样本课程
Introduction to Autonomous Robots: Kinematics,Perception,Localization and Planning,2nd Edition
未经允许不得转载:finelybook » Introduction to Autonomous Robots: Kinematics,Perception,Localization and Planning,2nd Edition
相关推荐
- Fuzzy Methods for Assessment and Decision Making
- Super Study Guide: Transformers & Large Language Models
- Artificial Intelligence and Machine Learning Foundations: Learning from Experience, 2nd Edition
- Data-Driven Analytics for Healthcare: Artificial Intelligence and Machine Learning for Medical Diagnostics
- Superstring Theory Mathematics with Python
- Science of Science: Understanding the Foundations and Limits of Science from an Interdisciplinary Perspective