Interpreting Machine Learning Models: Learn Model Interpretability and Explainability Methods
Author: Anirban Nandi and Aditya Kumar Pal
Publisher finelybook 出版社: Apress; 1st ed. edition (December 16,2021)
Language 语言: English
Print Length 页数: 366 pages
ISBN-10: 1484278011
ISBN-13: 9781484278017
Understand model interpretability methods and apply the most suitable one for your machine learning project. This book details the concepts of machine learning interpretability along with different types of explainability algorithms.
You’ll begin Author: reviewing the theoretical aspects of machine learning interpretability. In the first few sections you’ll learn what interpretability is,what the common properties of interpretability methods are,the general taxonomy for classifying methods into different sections,and how the methods should be assessed in terms of human factors and technical requirements. Using a holistic approach featuring detailed examples,this book also includes quotes from actual business leaders and technical experts to showcase how real life users perceive interpretability and its related methods,goals,stages,and properties.
Progressing through the book,you’ll dive deep into the technical details of the interpretability domain. Starting off with the general frameworks of different types of methods,you’ll use a data set to see how each method generates output with actual code and implementations. These methods are divided into different types based on their explanation frameworks,with some common categories listed as feature importance based methods,rule based methods,saliency maps methods,counterfactuals,and concept attribution. The book concludes Author: showing how data effects interpretability and some of the pitfalls prevalent when using explainability methods.
What You’ll Learn
Understand machine learning model interpretability
Explore the different properties and selection requirements of various interpretability methods
Review the different types of interpretability methods used in real life Author: technical experts
Interpret the output of various methods and understand the underlying problems
Interpreting Machine Learning Models: Learn Model Interpretability and Explainability Methods
未经允许不得转载:finelybook » Interpreting Machine Learning Models: Learn Model Interpretability and Explainability Methods
相关推荐
- Hands-On Prescriptive Analytics: Optimizing Your Decision Making with Python
- Just Enough Data Science and Machine Learning: Essential Tools and Techniques
- Cloud Native Application Protection Platforms: A Guide to CNAPPs and the Foundations of Comprehensive Cloud Security
- Data Science and Machine Learning for Non-Programmers: Using SAS Enterprise Miner
- Microsoft Copilot Pro Step by Step
- Practical Business Statistics, 8th Edition