Ensemble Learning for AI Developers: Learn Bagging,Stacking,and Boosting Methods with Use Cases


Ensemble Learning for AI Developers: Learn Bagging,Stacking,and Boosting Methods with Use Cases
by: Alok Kumar and Mayank Jain
Print Length 页数: 154 pages
Publisher finelybook 出版社:‏ Apress; 1st ed. edition (19 Jun. 2020)
Language 语言: English
ISBN-10: 1484259394
ISBN-13: 9781484259399

Book Description


Use ensemble learning techniques and models to improve your machine learning results.
Ensemble Learning for AI Developers starts you at the beginning with an historical overview and explains key ensemble techniques and why they are needed. You then will learn how to change training data using bagging,bootstrap aggregating,random forest models,and cross-validation methods. Authors Kumar and Jain provide best practices to guide you in combining models and using tools to boost performance of your machine learning projects. They teach you how to effectively implement ensemble concepts such as stacking and boosting and to utilize popular libraries such as Keras,Scikit Learn,TensorFlow,PyTorch,and Microsoft LightGBM. Tips are presented to apply ensemble learning in different data science problems,including time series data,imaging data,and NLP. Recent advances in ensemble learning are discussed. Sample code is provided in the form of scripts and the IPython notebook.
What You Will Learn
Understand the techniques and methods utilized in ensemble learning
Use bagging,stacking,and boosting to improve performance of your machine learning projects by: combining models to decrease variance,improve predictions,and reduce bias
Enhance your machine learning architecture with ensemble learning

打赏
未经允许不得转载:finelybook » Ensemble Learning for AI Developers: Learn Bagging,Stacking,and Boosting Methods with Use Cases

评论 抢沙发

觉得文章有用就打赏一下

您的打赏,我们将继续给力更多优质内容

支付宝扫一扫

微信扫一扫