Deep Learning in Computational Mechanics: An Introductory Course


Deep Learning in Computational Mechanics: An Introductory Course (Studies in Computational Intelligence, 977) 1st ed. 2021 Edition
by: Stefan Kollmannsberger,Davide D’Angella,Moritz Jokeit,Leon Herrmann (Author)
Publisher Finelybook 出版社:Springer; 1st ed. 2021 edition (August 6, 2021)
Language 语言:English
pages 页数:110 pages
ISBN-10 书号:3030765865
ISBN-13 书号:9783030765866

Book Description
This book provides a first course on deep learning in computational mechanics. The book starts with a short introduction to machine learning’s fundamental concepts before neural networks are explained thoroughly. It then provides an overview of current topics in physics and engineering, setting the stage for the book’s main topics: physics-informed neural networks and the deep energy method.

The idea of the book is to provide the basic concepts in a mathematically sound manner and yet to stay as simple as possible. To achieve this goal, mostly one-dimensional examples are investigated, such as approximating functions by: neural networks or the simulation of the temperature’s evolution in a one-dimensional bar.

Each chapter contains examples and exercises which are either solved analytically or in PyTorch, an open-source machine learning framework for python.

下载地址阅读全文需1积分,请先!或 捐 助 获取权限!
赞(0) 觉得文章有用就打赏一下
未经允许不得转载:finelybook » Deep Learning in Computational Mechanics: An Introductory Course

觉得文章有用就打赏一下

支付宝扫一扫打赏

微信扫一扫打赏