Deep Learning for Natural Language Processing: Solve your natural language processing problems with smart deep neural networks
Authors: Karthiek Reddy Bokka – Shubhangi Hora – Tanuj Jain – Monicah Wambugu
ISBN-10: 1838550291
ISBN-13: 9781838550295
Publication Date 出版日期: 2019-06-11
Print Length 页数: 372 pages
Publisher finelybook 出版社: Packt
Book Description
By finelybook
Gain the knowledge of various deep neural network architectures and their application areas to conquer your NLP issues.
Applying deep learning approaches to various NLP tasks can take your computational algorithms to a completely new level in terms of speed and accuracy. Deep Learning for Natural Language Processing starts off by highlighting the basic building blocks of the natural language processing domain. The book goes on to introduce the problems that you can solve using state-of-the-art neural network models. After this,delving into the various neural network architectures and their specific areas of application will help you to understand how to select the best model to suit your needs. As you advance through this deep learning book,you’ll study convolutional,recurrent,and recursive neural networks,in addition to covering long short-term memory networks (LSTM). Understanding these networks will help you to implement their models using Keras. In the later chapters,you will be able to develop a trigger word detection application using NLP techniques such as attention model and beam search.
By the end of this book,you will not only have sound knowledge of natural language processing but also be able to select the best text pre-processing and neural network models to solve a number of NLP issues.
What you will learn
Understand various pre-processing techniques for deep learning problems
Build a vector representation of text using word2vec and GloVe
Create a named entity recognizer and parts-of-speech tagger with Apache OpenNLP
Build a machine translation model in Keras
Develop a text generation application using LSTM
Build a trigger word detection application using an attention model
contents
1 Introduction to Natural Language Processing
2 Applications of Natural Language Processing
3 Introduction to Neural Networks
4 Foundations of Convolutional Neural Network
5 Recurrent Neural Networks
6 Gated Recurrent Units (GRUs)
7 Long Short-Term Memory (LSTM)
8 State-of-the-Art Natural Language Processing
9 A Practical NLP Project Workflow in an Organization