Collaborative Filtering: Recommender Systems

Collaborative Filtering: Recommender Systems
Author: Angshul Majumdar (Author)
Publisher finelybook 出版社: CRC Press
Edition 版次: 1st
Publication Date 出版日期: 2024-10-03
Language 语言: English
Print Length 页数: 127 pages
ISBN-10: 103284082X
ISBN-13: 9781032840826


Book Description
By finelybook

This book dives into the inner workings of recommender systems, those ubiquitous technologies that shape our online experiences. From Netflix show suggestions to personalized product recommendations on Amazon or the endless stream of curated YouTube videos, these systems power the choices we see every day.

Collaborative filtering reigns supreme as the dominant approach behind recommender systems. This book offers a comprehensive exploration of this topic, starting with memory-based techniques. These methods, known for their ease of understanding and implementation, provide a solid foundation for understanding collaborative filtering. As you progress, you’ll delve into latent factor models, the abstract and mathematical engines driving modern recommender systems.

The journey continues with exploring the concepts of metadata and diversity. You’ll discover how metadata, the additional information gathered by the system, can be harnessed to refine recommendations. Additionally, the book delves into techniques for promoting diversity, ensuring a well-balanced selection of recommendations. Finally, the book concludes with a discussion of cutting-edge deep learning models used in recommender systems.

This book caters to a dual audience. First, it serves as a primer for practicing IT professionals or data scientists eager to explore the realm of recommender systems. The book assumes a basic understanding of linear algebra and optimization but requires no prior knowledge of machine learning or programming. This makes it an accessible read for those seeking to enter this exciting field. Second, the book can be used as a textbook for a graduate-level course. To facilitate this, the final chapter provides instructors with a potential course plan.

About the Author

Angshul Majumdar

Angshul’s research interests lie in signal processing and machine learning with applications in smart grids and bioinformatics. Angshul has co-authored over 200 articles in journals and top tier conferences. He has written two books and co-edited two more and holds 7 US patents. He is an associate editor for IEEE Open Journal for Signal Processing and Elsevier Neurocomputing. In the past, he has been an associate editor for IEEE Transactions on Circuits and Systems for Video Technology.

Angshul is currently the director of student services at IEEE Signal Processing Society. Prior to that he was the chair for the education committee in the IEEE SPS membership board (2019). Angshul has also served as the chair for the chapter’s committee in the IEEE SPS membership board (2016-18). He had been the founding chair of IEEE SPS Delhi Chapter (2015-18). Angshul has been the organizing chair of two IEEE SPS Winter Schools in 2014 and 2017. He has served as the finance chair of IEEE ISBA 2017, the flagship conference of IEEE Biometrics Council.

Amazon page

相关文件下载地址

Formats: PDF | 7 MB
下载地址 Download解决验证以访问链接!
打赏
未经允许不得转载:finelybook » Collaborative Filtering: Recommender Systems

评论 抢沙发

觉得文章有用就打赏一下

您的打赏,我们将继续给力更多优质内容

支付宝扫一扫

微信扫一扫