Beginning Build and Release Management with TFS 2017 and VSTS: Leveraging Continuous Delivery for Your Business
by: Chaminda Chandrasekara
ISBN-10: 1484228103
ISBN-13: 9781484228104
Edition 版次: 1st ed.
Publication Date 出版日期: 2017-06-30
Print Length 页数: 559
Learn how to master build and release management with Team Foundation Service and Visual Studio Team Services to facilitate the continuous delivery of software updates to your development team.
You receive detailed,practical guidance on automating deployments of web sites in Azure App Service,database deployments to Azure platform,Micro Services deployments in Azure Service Fabric,and more. Each deployment is structured with the aid of hands-on lessons in a given target environment designed to empower your teams to achieve successful DevOps.
This book provides lessons on how to optimize build release management definitions using capabilities,such as task groups. With the help of practical scenarios,you’ll also learn how to diagnose and fix issues in automated builds and deployments. You’ll see how to enhance the capability of build and release management,using team services/TFS Marketplace extensions and writing your own extensions for any missing functionality via hands on lessons.
What you will Learn
Automate deployment to Azure platform,including Web App Service,Azure SQL and Azure Service Fabric.
Test automation integration with builds and deployments
Perform Dynamic CRM deployments handling and package management with TFS/VSTS
Examine requirement to production delivery traceability in practical terms
Review cross platform build/deployment capabilities of TFS/VSTS.
Who This Book Is For
Build/Release Engineers,Configuration Managers,Software Developers,Test Automation Engineers,System Engineers,Software Architects and System/Production Support Engineers or anyone who handles and involves in the software delivery process.
Contents
Chapter 1: Understanding the Concepts
Chapter 2: Configuring TFS2017/VSTS Build/Release Agents & Marketplace Extensions
Chapter 3: ASP.Net Web Application Deployment to Azure and IIS
Chapter 4: Build as Docker and Deploy to Azure
Chapter 5: Azure SQL and TFS/VSTS Build and Release
Chapter 6: Team Services for Azure Service Fabric Deployments
Chapter 7: Task Groups,Folders,and Build/Release Definition History
Chapter 8: Building with External Repositories and Other Platform Builds
Chapter 9: Test Automation with Build and Release
Chapter 10: Dynamics CRM Deployments with TFS/VSTS Release
Chapter 11: Effective Release Notes with TFS Release
Chapter 12: Package Management
Chapter 13: Extending Build and Release Tasks on Your Own
了解如何使用Team Foundation Service和Visual Studio Team Services来掌握构建和发布管理,以便于持续向开发团队提供软件更新。
您可以在Azure App Service中自动部署网站,Azure平台的数据库部署,Azure Service Fabric中的Micro Services部署等等,获得详细的实用指南。每个部署都是在给定目标环境中的实践教训的帮助下构建的,旨在使您的团队能够实现成功的DevOps。
本书介绍了如何使用功能(如任务组)优化构建版本管理定义的经验教训。在实际情况的帮助下,您还将学习如何诊断和修复自动构建和部署中的问题。您将看到如何增强构建和发布管理的能力,使用团队服务/ TFS Marketplace扩展,并通过教学手册编写自己的扩展以获取任何缺少的功能。
你会学到什么
自动部署到Azure平台,包括Web App Service,Azure SQL和Azure Service Fabric。
测试自动化与构建和部署的集成
使用TFS / VSTS执行动态CRM部署处理和包管理
检查实际生产交货追溯的要求
查看TFS / VSTS的跨平台构建/部署能力。
这本书是谁
构建/发布工程师,配置管理器,软件开发人员,测试自动化工程师,系统工程师,软件架构师和系统/生产支持工程师或任何处理和涉及软件交付过程的人员。
目录
第1章: 了解概念
第2章: 配置TFS2017 / VSTS构建/发布代理和市场扩展
第3章: ASP.Net Web应用程序部署到Azure和IIS
第4章: 构建Docker并部署到Azure
第5章: Azure SQL和TFS / VSTS构建和发布
第6章: Azure服务架构部署的团队服务
第7章: 任务组,文件夹和构建/发布定义历史
第8章: 构建外部存储库和其他平台构建
第9章: 通过构建和发布测试自动化
第10章: 使用TFS / VSTS发行版的Dynamics CRM部署
第11章: TFS发行版的有效版本说明
第12章: 软件包管理
第13章: 扩展您自己的构建和发布任务
Beginning Build and Release Management with TFS 2017 and VSTS: Leveraging Continuous Delivery for Your Business
未经允许不得转载:finelybook » Beginning Build and Release Management with TFS 2017 and VSTS: Leveraging Continuous Delivery for Your Business
相关推荐
- KVM Virtualization Cookbook
- AI and Emerging Technologies: Automated Decision-Making, Digital Forensics, and Ethical Considerations
- Applications of Deep Machine Learning in Future Energy Systems
- Fundamentals of Robotics: Applied Case Studies with MATLAB® & Python
- Linear Algebra in Circuit Design: With Python
- Machine Learning and Metaheuristic Computation