Applications of Machine Learning and Deep Learning on Biological Data (Advances in Computational Collective Intelligence) 1st Edition
by Faheem Masoodi (Editor), Mohammad Quasim (Editor), Syed Bukhari (Editor), Sarvottam Dixit (Editor), Shadab Alam (Editor)
Publisher finelybook 出版社: Auerbach Publications; 1st edition (March 13, 2023)
Language 语言: English
Print Length 页数: 200 pages
ISBN-10: 1032214376
ISBN-13: 9781032214375
Book Description
The automated learning of machines characterizes machine learning (ML). It focuses on making data-driven predictions using programmed algorithms. ML has several applications, including bioinformatics, which is a discipline of study and practice that deals with applying computational derivations to obtain biological data. It involves the collection, retrieval, storage, manipulation, and modeling of data for analysis or prediction made using customized software. Previously, comprehensive programming of bioinformatical algorithms was an extremely laborious task for such applications as predicting protein structures. Now, algorithms using ML and deep learning (DL) have increased the speed and efficacy of programming such algorithms.
Applications of Machine Learning and Deep Learning on Biological Data is an examination of applying ML and DL to such areas as proteomics, genomics, microarrays, text mining, and systems biology. The key objective is to cover ML applications to biological science problems, focusing on problems related to bioinformatics. The book looks at cutting-edge research topics and methodologies in ML applied to the rapidly advancing discipline of bioinformatics.
ML and DL applied to biological and neuroimaging data can open new frontiers for biomedical engineering, such as refining the understanding of complex diseases, including cancer and neurodegenerative and psychiatric disorders. Advances in this field could eventually lead to the development of precision medicine and automated diagnostic tools capable of tailoring medical treatments to individual lifestyles, variability, and the environment.
Highlights include:
Artificial Intelligence in treating and diagnosing schizophrenia
An analysis of ML’s and DL’s financial effect on healthcare
An XGBoost-based classification method for breast cancer classification
Using ML to predict squamous diseases
ML and DL applications in genomics and proteomics
Applying ML and DL to biological data