A First Course in Causal Inference (Chapman & Hall/CRC Texts in Statistical Science)
Author: Peng Ding (Author)
Publisher finelybook 出版社: Chapman and Hall/CRC
Edition 版本: 1st edition
Publication Date 出版日期: 2024-07-31
Language 语言: English
Print Length 页数: 448 pages
ISBN-10: 1032758627
ISBN-13: 9781032758626
Book Description
Book Description
Review
“This book offers a statistician’s perspective on causal inference. It provides an invaluable review of statistical paradoxes in causal inference from observational data, linking those paradoxes to Pearl’s directed acyclic graphs (DAGs). The overview of the literature on matching is the best that I’ve seen, and the inclusion of R code is a huge plus. The book would make a great introduction (and more) to advanced undergraduate and masters programs in statistics.”
Professor Bryan Dowd, University of Minneapolis, U.S.A.
“A First Course in Causal Inference by Peng Ding is written by an authority in the field at technical level that makes it stand out from existing textbooks on causal inference. It will be a welcome resource for students and researchers in public health, medicine, and the social sciences who have a good background in math and statistics. Exercises lead readers through important results, appendices review key mathematical and statistical concepts, and the book contains well-written R code that will be extremely useful for translating theory into practice.”
Professor Eben Kenah, The Ohio State University, U.S.A.
“Professor Ding accomplished something impressive with this book ― a clear, precise, and thorough introduction to Causal Inference. This book is a must-have for anyone interested in understanding the subject. I highly recommend it.”
Professor Hugo Jales, Syracuse University, Maxwell School of Citizenship & Public Affairs, USA.
About the Author
Peng Ding is an Associate Professor in the Department of Statistics at UC Berkeley. His research focuses on causal inference and its applications.
下载地址
相关推荐
- Machine Learning System Design: With end-to-end examples
- Learning AI Tools in Tableau: Level Up Your Data Analytics and Visualization Capabilities with Tableau Pulse and Tableau Agent
- Windows Server 2025 Administration Fundamentals: A beginner’s guide to managing and administering Windows Server environments
- Intelligent Manufacturing: Exploring AI, Blockchain, and Smart Technologies in Industry 4.0
- Generative Artificial Intelligence for Biomedical and Smart Health Informatics
- Database Design and Modeling with PostgreSQL and MySQL: Build efficient and scalable databases for modern applications using open source databases